9 resultados para expression stability

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

40.00% 40.00%

Publicador:

Resumo:

N-myc downstream-regulated gene 1 (NRDG1) is a stress-induced protein whose putative function is suppression of tumor metastasis. A recent proteonomic study showed NDRG1 interacts with the molecular chaperone heat shock protein 90 (Hsp90). From their reported association, we investigated if NDRG1 is dependent on Hsp90 for its stability and is therefore a yet unidentified Hsp90 client protein. Here, we demonstrate that endogenous NDRG1 and Hsp90 physically associate in hepatocellular cancer cell lines. However, geldanamycin (GA)-mediated inhibition of Hsp90 did not disrupt their interaction or result in NDRG1 protein destabilization. On the contrary, inhibition of Hsp90 led to a transcriptional increase of NDRG1 protein which was associated with cell growth arrest. We also observed that GA inhibited the phosphorylation of NDRG1 by targeting its regulating kinases, serum- and glucocorticoid-induced kinase 1 (SGK1) and glycogen synthase kinase 3 beta (GSK3beta). We demonstrate that in the presence of GA, GSK3beta protein and activity were decreased thus indicating that Hsp90 is necessary for GSK3beta stability. Taken together, our data demonstrate that NDRG1 is not a classic client protein but interacts with Hsp90 and is still dually regulated by Hsp90 at a transcriptional and post-translational level. Finally, we suggest for the first time GSK3beta as a new client protein of Hsp90.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND The human activation peptide of factor XIII (AP-FXIII) comprises the first 37 amino acids of the N-terminus and holds the FXIII in an inactive state. FXIII is activated either proteolytically by cleavage of AP-FXIII by thrombin, or non-proteolytically by high calcium concentrations. OBJECTIVE To investigate the role of AP-FXIII in the expression and stability of FXIII. METHODS We cloned 13 FXIII variants with progressive truncations of AP-FXIII from the N-terminus (delN-FXIII-A), expressed them in mammalian cells, and measured their thermostability, activation, and transglutaminase activity. We also used in silico calculations to analyze the stability of hypothetical delN-FXIII dimers and to identify crucial motifs within AP-FXIII. RESULTS Variants with deletions longer than the first 10 amino acids and an R11Q point mutant were not expressed as proteins. In silico calculations indicated that the sequence (8) FGGR(12) R plays a substantial role in intersubunit interactions in FXIII-A2 homodimers. In agreement with this prediction, the temperature stability of delN-FXIII variants decreased with increasing length of deletion. These results may suggest a role of the N-terminus of AP-FXIII in dimer stability. Substantial sequence homology was found among activation peptides of vertebrate and even invertebrate (crustacean) FXIII-A orthologs, which further supports our conclusion. CONCLUSIONS We conclude that deletion of 11 or more N-terminal amino acids disrupts intersubunit interactions, which may prevent FXIII-A2 homodimer formation. Therefore, AP-FXIII plays an important role in the stability of the FXIII-A2 dimer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deregulation of receptor tyrosine kinases (RTKs) is linked to a broad range of cancers, stressing the necessity of studying their regulatory pathways. We and others demonstrated previously that c-Cbl is necessary for the lysosomal degradation of erythropoietin-producing hepatocellular B1 (EphB1) carcinoma and epidermal growth factor receptor (EGFR) RTKs. Moreover, the tumor suppressor phosphatase and tensin homolog (PTEN) was shown to modulate c-Cbl-dependent EGFR degradation. We therefore investigated the involvement of PTEN in EphB1 signaling and degradation. We used PTEN mutants, PTEN, and NHERF1 small interfering RNA in CHO-EphB1 and SW480 cells endogenously expressing EphB1 to delineate EphB1-PTEN interactions. PTEN was constitutively associated with c-Cbl, protecting it from degradation. EphB1 stimulation triggered ∼50% serine-threonine PTEN dephosphorylation and PTEN-Cbl complex disruption, a process requiring PTEN protein phosphatase activity. Both proteins independently translocated to EphB1, with PTEN in association with the scaffold protein NHERF1. Biologically, PTEN lipid phosphatase activity impairs EphB1-dependent cell adhesion and chemotaxis. This study demonstrates for the first time in mammalian cells that the Eph receptor and PTEN associate and influence their signaling. Moreover, it contributes to the emerging concept that PTEN regulates expression of RTKs through modulation of their degradation. Finally, it reveals a new role for PTEN protein phosphatase activity involved in this process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Apparent mineralocorticoid excess (AME) is a severe form of hypertension that is caused by impaired activity of 11beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD2), which converts biologically active cortisol into inactive cortisone. Mutations in HSD11B2 result in cortisol-induced activation of mineralocorticoid receptors and cause hypertension with hypokalemia, metabolic alkalosis, and suppressed circulating renin and aldosterone concentrations. This study uncovered the first patient with AME who was described in the literature, identified the genetic defect in HSD11B2, and provided evidence for a novel mechanism of reduced 11beta-HSD2 activity. This study identified a cluster of amino acids (335 to 339) in the C-terminus of 11beta-HSD2 that are essential for protein stability. The cluster includes Tyr(338), which is mutated in the index patient, and Arg(335) and Arg(337), previously reported to be mutated in hypertensive patients. It was found that wild-type 11beta-HSD2 is a relatively stable enzyme with a half-life of 21 h, whereas that of Tyr(338)His and Arg(337)His was 3 and 4 h, respectively. Enzymatic activity of Tyr(338)His was partially retained at 26 degrees C or in the presence of the chemical chaperones glycerol and dexamethasone, indicating thermodynamic instability and misfolding. The results provide evidence that the degradation of both misfolded mutant Tyr(338)His and wild-type 11beta-HSD2 occurs through the proteasome pathway. Therefore, impaired 11beta-HSD2 protein stability rather than reduced gene expression or loss of catalytic activity seems to be responsible for the development of hypertension in some individuals with AME.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Standard protocols are given for assessing metabolic stability in rainbow trout using the liver S9 fraction. These protocols describe the isolation of S9 fractions from trout livers, evaluation of metabolic stability using a substrate depletion approach, and expression of the result as in vivo intrinsic clearance. Additional guidance is provided on the care and handling of test animals, design and interpretation of preliminary studies, and development of analytical methods. Although initially developed to predict metabolism impacts on chemical accumulation by fish, these procedures can be used to support a broad range of scientific and risk assessment activities including evaluation of emerging chemical contaminants and improved interpretation of toxicity testing results. These protocols have been designed for rainbow trout and can be adapted to other species as long as species-specific considerations are modified accordingly (e.g., fish maintenance and incubation mixture temperature). Rainbow trout is a cold-water species. Protocols for other species (e.g., carp, a warm-water species) can be developed based on these procedures as long as the specific considerations are taken into account.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Altered gap junctional coupling potentiates slow conduction and arrhythmias. To better understand how heterogeneous connexin expression affects conduction at the cellular scale, we investigated conduction in tissue consisting of two cardiomyocyte populations expressing different connexin levels. Conduction was mapped using microelectrode arrays in cultured strands of foetal murine ventricular myocytes with prede fi ned contents of connexin 43 knockout (Cx43KO) cells. Corresponding computer simulations were run in randomly generated two-dimensional tissues mimicking the cellular architecture of the strands. In the cultures, the relationship between conduction velocity (CV) and Cx43KO cell content was nonlinear. CV fi rst decreased signi fi cantly when Cx43KO content was increased from 0 to 50%. When the Cx43KO content was ≥ 60%, CV became comparabletothatin100%Cx43KOstrands.Co-culturingCx43KOandwild-typecellsalsoresultedinsigni fi cantly more heterogeneous conduction patterns and in frequent conduction blocks. The simulations replicated this behaviour of conduction. For Cx43KO contents of 10 – 50%, conduction was slowed due to wavefront meandering between Cx43KO cells. For Cx43KO contents ≥ 60%, clusters of remaining wild-type cells acted as electrical loads thatimpairedconduction.ForCx43KOcontentsof40 – 60%,conductionexhibitedfractal characteristics,wasprone to block, and was more sensitive to changes in ion currents compared to homogeneous tissue. In conclusion, conduction velocity and stability behave in a nonline ar manner when cardiomyocytes expressing different connexin amounts are combined. This behaviour results from heterogeneous current-to-load relationships at the cellular level. Such behaviour is likely to be arrhythmogenic in various clinical contexts in which gap junctional coupling is heterogeneous.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multiple somatostatin receptor (sst)-subtype expression has been manifested in several human tumors. Hence, the availability of radiopeptides retaining the full pansomatostatin profile of the native hormone (SS14) is expected to increase the sensitivity and broaden the clinical indications of currently applied sst2-preferring cyclic octapeptide radioligands, like OctreoScan(®) ([(111)In-DTPA]octreotide). On the other hand, SS14 has been excluded from clinical use due to its rapid in vivo degradation. We herein present a small library of seven novel cyclic SS14-mimics carrying at their N-terminus the universal chelator DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) for stable binding of medically useful radiometals, like (111)In. By decreasing the number of amino acids composing the ring in their structure from 12 up to 6 AA, we induced important changes in key-biological parameters in vitro and in vivo. In particular, we observed unexpected changes and even total loss of sst1-5-affinity (6AA-ring), as well as weaker sst2-internalization efficacy as the ring size decreased. In contrast, in vivo stability increased with decreasing ring size, reaching its maximum in the 6AA-ring analogs. Interestingly, only the 12AA- and 9AA-ring members of this series showed sst2-specific uptake in AR4-2J tumors in mice revealing the prominent role of ring size on the biological response of tested SS14-derived radioligands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Four Staphylococcus aureus-Escherichia coli shuttle vectors were constructed for gene expression and production of tagged fusion proteins. Vectors pBUS1-HC and pTSSCm have no promoter upstream of the multiple cloning site (MCS), and this allows study of genes under the control of their native promoters, and pBUS1-Pcap-HC and pTSSCm-Pcap contain the strong constitutive promoter of S. aureus type 1 capsule gene 1A (Pcap) upstream of a novel MCS harboring codons for the peptide tag Arg-Gly-Ser-hexa-His (rgs-his6). All plasmids contained the backbone derived from pBUS1, including the E. coli origin ColE1, five copies of terminator rrnB T1, and tetracycline resistance marker tet(L) for S. aureus and E. coli. The minimum pAMα1 replicon from pBUS1 was improved through either complementation with the single-strand origin oriL from pUB110 (pBUS1-HC and pBUS1-Pcap-HC) or substitution with a pT181-family replicon (pTSSCm and pTSSCm-Pcap). The new constructs displayed increased plasmid yield and segregational stability in S. aureus. Furthermore, pBUS1-Pcap-HC and pTSSCm-Pcap offer the potential to generate C-terminal RGS-His6 translational fusions of cloned genes using simple molecular manipulation. BcgI-induced DNA excision followed by religation converts the TGA stop codon of the MCS into a TGC codon and links the rgs-his6 codons to the 3' end of the target gene. The generation of the rgs-his6 codon-fusion, gene expression, and protein purification were demonstrated in both S. aureus and E. coli using the macrolide-lincosamide-streptogramin B resistance gene erm(44) inserted downstream of Pcap. The new His tag expression system represents a helpful tool for the direct analysis of target gene function in staphylococcal cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Expression of replication-dependent histone genes requires a conserved hairpin RNA element in the 3' untranslated regions of poly(A)-less histone mRNAs. The 3' hairpin element is recognized by the hairpin-binding protein or stem-loop-binding protein (HBP/SLBP). This protein-RNA interaction is important for the endonucleolytic cleavage generating the mature mRNA 3' end. The 3' hairpin and presumably HBP/SLBP are also required for nucleocytoplasmic transport, translation, and stability of histone mRNAs. RNA 3' processing and mRNA stability are both regulated during the cell cycle. Here, we have determined the three-dimensional structure of a 24-mer RNA comprising a mammalian histone RNA hairpin using heteronuclear multidimensional NMR spectroscopy. The hairpin adopts a novel UUUC tetraloop conformation that is stabilized by base stacking involving the first and third loop uridines and a closing U-A base pair, and by hydrogen bonding between the first and third uridines in the tetraloop. The HBP interaction of hairpin RNA variants was analyzed in band shift experiments. Particularly important interactions for HBP recognition are mediated by the closing U-A base pair and the first and third loop uridines, whose Watson-Crick functional groups are exposed towards the major groove of the RNA hairpin. The results obtained provide novel structural insight into the interaction of the histone 3' hairpin with HBP, and thus the regulation of histone mRNA metabolism.